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1    Introduction 
In our just completed research program, we considered certain geometric variational meth- 
ods for problems in controlled active vision. In this report, we will concentrate on the 
work we performed for the problems of registration, warping, and optical flow as related 
to dynamical tracking. 

Vision is a key sensor modality in both the natural and man-made domains. The 
prevalence of biological vision in even very simple organisms, indicates its utility in man- 
made machines. More practically, cameras are in general rather simple, reliable passive 
sensing devices which are quite inexpensive per bit of data. Furthermore, vision can offer 
information at a high rate with high resolution with a wide field of view and accuracy 
capturing multi-spectral information. Finally cameras can be used in a more active manner. 
Namely, one can include motorized lenses mounted on mobile platforms which can actively 
explore the surroundings and suitably adapt their sensing capabilities. 

For some time now, the role of control theory in vision has been recognized. In par- 
ticular, the branches of control that deal with system uncertainty, namely adaptive and 
robust, have been proposed as essential tools in coming to grips with the problems of both 
biological and machine vision. These problems all become manifest when one attempts 
to use a visual sensor in an uncertain environment, and to feed back in some manner the 
information. These issues constitute a key thrust in our research program. 

In this report, we will describe in some detail our new approach to the classical area 
of optimal transport. Optimal transport has appeared in econometrics, fluid dynamics, 
automatic control, transportation, statistical physics, shape optimization, expert systems, 
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and meteorology. In particular, for the general visual tracking problem in controlled active 
vision, a robust and reliable object and shape recognition system is of major importance. 
A key way to carry this out is via template matching, which is the matching of some object 
to another within a given catalogue of objects. Typically, the match will not be exact and 
hence some criterion is necessary to measure the "goodness of fit." The matching criterion 
can also be considered a shape metric for measuring the similarity between two objects. 
In our work, we applied concepts from optimal transport theory to develop such shape 
metrics. 

This also led to a novel approach for the problem of optical flow. The computation of 
optical flow has proved to be an important tool for problems arising in active vision, includ- 
ing visual tracking. We have weakened the usual optical flow constraints with ideas from 
optimal transport and the theory of area-preserving mappings. This research represents 
our continuing efforts on the utilization visual information in a feedback loop. 

2    Curvature Flows in Vision and Image Processing 
The mathematical basis for our work rests on two pillars: invariant curvature driven flows 
and geometric variational problems. Here we will outline some of the basic results on the 
flows which are the basis of the partial differential equation methods in controlled active 
vision. We should note that these flows themselves are motivated by ideas from optimal 
control [42]. 

A curve may be regarded as a trajectory of a point moving in the plane. Formally, we 
define a (closed) curve C(-) as the map C(p) : S1 —► R2 (where S1 denotes the unit circle). 
We assume that our curves are have no self-intersections, i.e., are embedded. 

We now consider plane curves deforming in time. Let C(p,t) : S1 x [0,r) —> R2 denote 
a family of closed embedded curves, where t parameterizes the family, and p parameterizes 
each curve. Assume that this family evolves according to the following equation: 

C(p,0) = C0(p) W 

where M is the inward Euclidean unit normal, T is the unit tangent, and a and ß are the 
tangent and normal components of the evolution velocity u, respectively. In fact, it is easy 
to show that Img[C(p,i)] = Img[C(iü,t)], where C(p,t) and C(w,t) are the solutions of 

Ct = aT + ßN' and Ct = ßtf, 

respectively. (Here Img[-]' denotes the image of the given parameterized curve in R2.) 
Thus the tangential component affects only the parametrization, and not Img[-] (which is 
independent of the parametrization by definition). Therefore, assuming that the normal 
component ß of v (the curve evolution velocity) in (1) does not depend on the curve 
parametrization, we can consider the evolution equation 

f=/*V, (2) 

{ 



where ß = v • M. 
The evolution (2) has been studied extensively for different functions ß both from the 

theoretical and applied points of view. In particular, it was introduced into computer 
vision for a theory of shape in [39, 40, 41]. 

Two of the most important flows are derived for ß = K and ß = 1. In the former case, 
we will see that there is natural stochastic interpretation which may lead to an alternative 
way of evolving hypersurfaces, which is one of the subjects of our new research program. 

More precisely, consider the flow 

dC 
§ = «V. (3) 

Equation (3) has its origins in physical phenomena [23].  It is called the geometric heat 
equation or the Euclidean shortening flow, since the Euclidean perimeter shrinks as fast as 
possible when the curve evolves according to (3); see [23]. 

The second case is ß = 1: 

This equation simulates, under certain conditions, the grassfire flow [9], and is the basis of 
the morphological scale-space defined by the disk as structuring element. 

There is also an affine analogue of the Euclidean shortening flow which motivated the 
whole subject of invariant flows. Indeed, in [60], we show that the simplest non-trivial 
affine invariant flow in the plane is given by 

Ct = K
1
^. (5) 

One can show that if C(-,0) : S1 —> R2 be a smooth embedded curve in the plane, then 
there exists a family C : S1 x [0, T) —> R2 satisfying 

such that C(-,t) is smooth for all t <T, and moreover there is a to < T such that for all 
t > to, C(-,t) is smooth and convex. Hence just as in the Euclidean case, a non-convex 
curve first becomes convex when evolving according to (5). After this, the curve converges 
to an ellipse from our results in [60]. 

One can use this flow to construct an affine invariant scale-space for planar shapes [61]. 
This in conjunction with the theory of differential invariants can be used for a theory of 
invariant object recognition. 

3    Conformal (Geodesic) Active Contours 
In this section, we will briefly review a paradigm for snakes or active contours based on 
principles from curvature driven flows and the calculus of variations.   Active contours 



may be regarded as autonomous processes which employ image coherence in order to track 
various features of interest over time. Such deformable contours have the ability to conform 
to various object shapes and motions. Snakes have been utilized for segmentation, edge 
detection, shape modelling, and visual tracking. 

In the classical theory of snakes, one considers energy minimization methods where 
controlled continuity splines are allowed to move under the influence of external image 
dependent forces, internal forces, and certain constraints set by the user. As is well-known 
there may be a number of problems associated with this approach such as initializations, 
existence of multiple minima, and the selection of the elasticity parameters. Moreover, 
natural criteria for the splitting and merging of contours (or for the treatment of multiple 
contours) are not readily available in this framework. In [35], we propose a deformable 
contour model to successfully solve such problems which we call conformal active contours. 
(A similar approach was independently formulated in [13, 64]. In [13], the method is called 
geodesic active contours.) 

The method is based on the Euclidean curve shortening evolution which defines the 
gradient direction in which a given curve is shrinking as fast as possible relative to Euclidean 
arc-length, and on the theory of conformal metrics. We multiply the Euclidean arc-length 
by a conformal factor defined by the features of interest which we want to extract, and then 
we compute the corresponding gradient evolution equations. The features which we want 
to capture therefore lie at the bottom of a potential well to which the initial contour will 
flow. Moreover, our model may be be extended to extract 3D contours based on motion 
by mean curvature [35, 45]. 

Briefly, let g(x, y) be an image dependent function tailored to the type of feature which 
we want to capture. For example, the term g(x,y) may chosen to be small near an edge, 
and so acts to stop the evolution when the contour gets close to an edge. The idea now is 
to change the ordinary arc-length function along a curve C = (x(p), y(jp))T with parameter 
p given by 

dS = (xl + y2
p)^dp, 

to 
dsg = {xl + yl)1'2gdp. 

Then we want to compute the corresponding gradient flow for shortening length relative 
to the new metric dsg. 

Accordingly set 

hit) ■■= fQ W^Wgdp. 'I' 
Then taking the first variation of the modified length function Lg, and using integration 
by parts (see [35]), we get that 

L'9(t)   =   -J       (^t,gKM-{Vg.N)U)ds 



which means that the direction in which the Lg perimeter is shrinking as fast as possible 
is given by 

^ = (9K-(Vg-M)W. (6) 

This is precisely the gradient flow corresponding to the minimization of the length func- 
tional L$. The level set version of this is 

f ^^llV^lldM^+V.-V*. (7) 

One expects that this evolution should attract the contour very quickly to the feature 
which lies at the bottom of the potential well described by the gradient flow (7). We may 
also add a constant inflation term (see also [45] for a more rigorous justification), and so 
derive a modified model of (7) given by 

— = 3||V*||(div(p^) + u) + Vg ■ W. (8) 

4    Optimal Transport for Registration and Optical Flow 
The mass transport problem was first formulated by Gaspar Monge in 1781, and concerned 
finding the optimal way, in the sense of minimal transportation cost, of moving a pile of 
soil from one site to another. This problem was given a modern formulation in the work of 
Kantorovich [37], and so is now known as the Monge-Kantorovich problem. The problem 
of optimal tranpsort has appeared in econometrics, fluid dynamics, automatic control, 
transportation, statistical physics, shape optimization, expert systems, and meteorology 
[54]. It also naturally fits into certain problems in computer vision [25]. In particular, 
for the general visual tracking problem, a robust and reliable object and shape recognition 
system is of major importance. A key way to carry this out is via template matching, which 
is the matching of some object to another within a given catalogue of objects. Typically, 
the match will not be exact and hence some criterion is necessary to measure the "goodness 
of fit." For a description of various matching procedures, see [31] and the references therein. 
The matching criterion can also be considered a shape metric for measuring the similarity 
between two objects. 

Registration proceeds in several steps. First, each image or data set to be matched 
should be individually calibrated, corrected for imaging distortions and artifacts, and 
cleared of noise. Next, a measure of similarity between the data sets must be estab- 
lished, so that one can quantify how close an image is from another after transformations 
are applied. Such a measure may include the similarity between pixel intensity values, as 
well as the proximity of predefined image features such as implanted fiducials, anatomical 
landmarks, surface contours, and ridge lines. Next, the transformation that maximizes the 
similarity between the transformed images is found. Often this transformation is given as 



the solution of an optimization problem where the transformations to be considered are 
constrained to be of a predetermined class. Finally, once an optimal transformation is 
obtained, it is used to fuse the image data sets. 

As we will explicate below, the method we propose for registration in the context of 
tracking is based on an optimization problem built around the I? Kantorovich-Wasserstein 
distance taken as the similarity measure. The constraint that we have put on the transfor- 
mations considered is that they obey a mass preservation property. Thus, we match mass 
densities in this method, which may be thought of as weighted areas in 2D or weighted 
volumes in 3D. 

We will also describe the use of such ideas for the problem of optical flow. The com- 
putation of optical flow has proved to be an important tool for problems arising in active 
vision, including visual tracking. The optical flow field is defined as the velocity vector 
field of apparent motion of brightness patterns in a sequence of images. We have explored 
various constrained optimization approaches for the purpose of accurately computing op- 
tical flow. In our work, we formulated approaches based upon the theory of optimal mass 
transport and area-preserving mappings. 

4.1    Formulation of the Problem 

We now give a modern formulation of the Monge-Kantorovich problem. Let f^o and fii be 
two subdomains of Rd, with smooth boundaries, each with a positive density function, fio 
and fii, respectively. We assume 

/   /i0=  /   ß\ 

so that the same total mass is associated with QQ and Cli. We consider diffeomorphisms ü 
from (f&o,Mo) to (Qi,/ii) which map one density to the other in the sense that 

Ho = \Dü\ fj,i o ü, (9) 

which we will call the mass preservation (MP) property, and write ü G MP. Equation (9) is 
called the Jacobian equation. Here \Dv\ denotes the determinant of the Jacobian map Du. 
In particular, Equation (9) implies, for example, that if a small region in Q0 is mapped to 
a larger region in fii, then there must be a corresponding decrease in density in order for 
the mass to be preserved. A mapping ü that satisfies this property may thus be thought 
of as defining a redistribution of a mass of material from one distribution fio to another 
distribution//!. 

There may be many such mappings, and we want to pick out an optimal one in some 
sense. Accordingly, we define the IP Kantorovich-Wasserstein metric as follows: 

dp(iMi,ni)P '■=      inf.        \\ü(x)-x\\pn0(x)dx. (10) 
ü E MP J 



An optimal MP map, when it exists, is one which minimizes this integral. This functional 
is seen to place a penalty on the distance the map ü moves each bit of material, weighted 
by the material's mass. 

The case p = 2 has been extensively studied. The I? Monge-Kantorovich problem 
has been studied in statistics, functional analysis, and the atmospheric sciences; see [17, 8] 
and the references therein. A fundamental theoretical result [43, 10, 27], is that there is 
a unique optimal ü € MP transporting no to pi, and that this ü is characterized as the 
gradient of a convex function w, i.e., ü = Vtü. Note that from Equation (9), we have that 
w satisfies the Monge-Ampere equation 

\Hw\ HI o (Vw) — no, 

where \Hw\ denotes the determinant of the Hessian Hw of to. 
Hence, the Kantorovich-Wasserstein metric defines the distance between two mass den- 

sities, by computing the cheapest way to transport the mass from one domain to the other 
with respect to the functional given in (10), the optimal transport map in the p = 2 case 
being the gradient of a certain function. The novelty of this result is that like the Riemann 
mapping theorem in the plane, the procedure singles out a particular map with preferred 
geometry. 

4.2    Mönge-Kantorovich and Optimal Transport 

In our research, we focused on the uses of ideas from optimal transport for problems in 
controlled active vision and visual tracking. However, given the potential power of these 
ideas in systems and control, we would like to list some key uses of Monge-Kantorovich: 

1. Lyapunov theory is essential is studying nonlinear system stability and controller 
synthesis. In some very interesting work, Rantzer [55] has formulated a dual to 
Lyapunov's second theorem. The idea is that the Lyapunov function is regarded 
as the "cost to go" in an optimal transport problem and is dual (in the sense of 
linear programming) to the density function typically studied in Monge-Kantorovich 
theory. These ideas give a powerful new tool in studying nonlinear system analysis. 

2. Shape optimization is another area of use for optimal transport. For example, given 
two densities and an insulating medium into which we place a fixed amount of con- 
ducting material one can consider the problem of the optimal placement of the con- 
ducting material to minimize the heating induced by the flow. This can be put 
into the Monge-Kantorovich optimal transport framework. Similar remarks apply 
to problems in compression molding, where one considers an incompressible plastic 
material being pressed being two plates in which one wants to track the air-plastic 
interface. 

3. One of the most beautiful uses of optimal transport is in meteorology, in particular 
semigeostrophic models. These are concerned with with large scale stratified flows 
with front formation [17]. The idea is that meteorologists want to model how fronts 



arise in large-scale weather patterns. Tracking such fronts is a key goal, and semi- 
geostrophic equations seem to give a reasonable mathematical model for the creation 
of such fronts. This leads naturally to optimal mass transport equations. 

4.3    Background on Algorithms for Computing The Transport 
Map 

There have been a number of algorithms considered for computing an optimal transport 
map. For example, methods have been proposed based on linear programming [54], and 
oh Lagrangian mechanics closely related to ideas from the study of fluid dynamics [8]. An 
interesting geometric method has been formulated by Cullen and Purser [17]. 

One very common method is to reduce the I? optimal transport to a linear programming 
problem. Thus one can approximate the the densities \JUQ and /^o as weighted sums delta 
functions, such as 

fi0(x) = 1/N J2 S(x - Xi),    /ii(z) = 1/N J2 S(x ~ Vi), 
i=l,N i=l,N 

for 2N give points xi,... , xN, yi,... , yN G Rd. The L2 Kantorovich distance is then 

N 

d2{tM,,ßi)2 = miy^\yi-x^i)\
2, (11) 

l 

where the infimum is over all permutations on N letters a. 
This problem can be solved as linear programming problem, by noting that Equa- 

tion (11) can be expressed as 
N 

inf V djPij 

where Cij — \x{ — yj\2, and p denotes any N x N matrix with non-negative entries, such 
that the sum of all columns and rows equals 1 (these are the "doubly-stochastic matrices"). 
There are optimal algorithms for general cost matrices Cy, but to the best of our knowledge 
there are no known optimal algorithms for the special case in which c^- = \xi — yj\2. Finally, 
note that even in the 2D case, typical image sizes run to 512 x 512, and so the linear 
programming problem can get to be quite unwieldy. 

A more effective algorithm based on ideas from continuum mechanics was proposed in 
[8]. This based on ideas from Lagrangian mechanics and a certain relaxation method. This 
has influenced our approach discussed below. In our case however for image tracking, we 
will argue that the most effective method should be based on gradient descent and the 
concept of "polar factorization." We discuss this in the next section. 



4.4    Variational Algorithms for Optimal Transport 

In this section, we describe a natural solution to L2 Monge-Kantorovich based on the 
equivalent problem of polar factorization; see [10, 26, 48] and the references therein. The 
mathematical basis for the approach described here may be found in [5], and applications 
to visual tracking in [30]. We will work with the general case of subdomains in Rd, and 
point out some simplifications that are possible for the M.2 case. 

As above, let ffo, ^i C M.d be subdomains with smooth boundaries, with corresponding 
positive density functions fio and /xi satisfying fn fio = fn ßi- Let u : (Jlo, fio) —*■ (Sli,/ii) 
be an initial mapping with the mass preserving (MP) property. Then accordingto the 
generalized results of [10, 26], one can write 

). 

u = (Vto) os,    . (12) 

where w is a convex function and s is an MP mapping s : (£lo,ßo) —* (^o,A*o)- This is 
the polar factorization ofu with respect to ^o- In [26], just the case of area preservation is 
considered, i.e., fio is assumed constant, but the general case goes through as well. 

Our goal is to find the polar factorization of the MP mapping u, according to the 
following strategy. We consider the family of MP mappings of the form ü = uo s_1 as s 
varies over MP mappings from (f20j A*o) to itself. If we consider ü as a vector field, we can 
always find a function w and another vector field %, with div(x) = 0, such that 

ü = Vw + x, 

i.e., we can decompose ü into the sum of a curl-free and divergence-free vector field [66]. 
Thus, what we try to do is find a mapping s which will yield a ü without any curl, that is, 
such that ü — Vw. Once such an s is found, we will have it = jjos = (Vio) o s and so we 
will have found the polar factorization (12) of our given function u. 

Now, here is the key point. As we discussed above, the unique optimal solution of 
the I? Monge-Kantorovich problem has the form ü = Vui, and so the problem of finding 
the polar factorization of u and finding the optimal Monge-Kantorovich mapping ü are 
equivalent. In essence, our proposed approach to solve the Monge-Kantorovich problem is 
to create a "rearrangement" of an initial vector field u using a map s, so that the resulting 
vector field ü = u o s_1 has no curl. 

Finding an Initial Mapping: 

We will describe an explicit algorithm to solye the Monge-Kantorovich problem. So we 
want to minimize the L2 Kantorovich-Wasserstein distance functional over MP functions 
from (Q0, po) to (fij, /ii). We will try to do this by finding an initial MP mapping u and then 
minimizing over ü = uos~1 by varying s over MP mappings from O0 to Q0, starting with s 
equal to the identity map. Our first task is to find and initial MP mapping u. This can be 
done for general domains using a method of Moser [51, 18], or for simpler domains using 
the following algorithm. For simplicity, we work in R2 and assume O0 = ^i = [0, l]2, the 
generalization to higher dimensions being straightforward. We define a function a = a(x) 



by the equation 

pa(x)    pi px    pi 

/ Vi(v,y) dy dr) =  I    /   Ho(v,y) dy d-q (13) 
70      Jo Jo   Jo 

which gives by differentiation with respect to x 

a'(x) /  //!(a(a;),y) dy = /   Ho(x,y) dy. (14) 
Jo Jo 

We may now define a function b = b(x, y) by the equation 

rKx>v) rv 
a'(x) /i!(a(x),p) dp = /   p,0(x,p) dp, (15) 

7o JO 

and set u(x,y) = (a(x),b(x,y)). Since ay = 0, |Dw| = axby, and differentiating (15) with 
respect to y we find 

a'(x)by(x,y) fj.1(a(x),b(x,y))   =   no(x,y) 
\Du\ ßi on   =   /i0, 

which is the MP property we need. This process can be interpreted as the solution of a 
one-dimensional Monge-Kantorovich problem in the x direction followed by the solution 
of a family of one-dimensional Monge-Kantorovich problems in the y direction. 

The map created above can be quite crude, and so one can use other methods for 
writing down an initial mapping including using an approach based on volume-preserving 
diffeomorphisms as suggested in [51]. 

Removing the Curl: 

Once an initial MP u is found, we need to apply the process which will remove its curl. We 
first note that the composition of two mass preserving (MP) mappings is an MP mapping, 
and the inverse of an MP mapping is an MP mapping. Thus, since u is an MP mapping, 
we have that ü = u o s_1 is an MP mapping if and only if s is, that is, if and only if 

/i0 = \Ds\ no ° s. 

In particular, when /x0 is constant, this equation requires that s be area or volume preserv- 
ing. 

Next, rather than working with s directly, we solve the polar factorization problem 
via gradient descent. Accordingly, we will assume that s is a function of time, and then 
determine what st should be to decrease the L2 Monge-Kantorovich functional. This will 
give us an evolution equation fors and in turn an equation for üt as well, the latter being 
the most important for implementation. By differentiating ü o s = u with respect to time, 
we get 

üt   =   -Du st 

10 



where we've abused notation to define st := stos 1. We need to make sure that s maintains 
its MP property. Differentiating ßo = \Ds\ ßo ° s with respect to time, we derive 

div(/i0 §t) = 0, 

from which we see that st, st and üt should have the following forms: 

s,   =   if. (16) 

*   =   (if) os, (17) 

üt   = Dü£, (18) 

for some vector field £ on Qo, with div(C) = 0 and (£, n) = 0 on c?!Tüo, n being the normal 
to the boundary of Q,Q. This last condition ensures that s remains a mapping from fio to 
itself, by preventing the flow of s, given by st = ( -pC) ° S

J from crossing the boundary of 

f2o- This also means that the range of ü — u o s-1 is always u(fio) = fii. • 

Consider now the problem of minimizing the Monge-Kantorovich functional: 

M   =   J\\ü-x\\2ß0 (19) 

=   J\\ü\\2/io-2 f(ü,x)/Jo + J\\x\\2fi0. (20). 

The last term is obviously independent of time. Interestingly, so is the first, 

|||ü||Vo   =   JWuoa-^fio 

=   JWuos-^lDs-'l^os-1 : 

=   /iHlVo 

where ßo = IDs-1] ß0 ° s
_1 since s_1 is an MP map. 

Turning now to the middle term, we do a similar trick, 

{ü,x)ßo   =    / (u o s'1, s o s'1) no 

=    I (u o s_1,s o s_1) |-Ds_1|/io ° s_1 

=    / <«, s) no, 

11 



and taking st=(-^<nos, we compute 

~2Mt   =    I (u>8*) to 

=     / (Sos, f — CJ os) \DS\HQOS 

= /(fi'^c)"° 
= /(ä,C>. 

Now decomposing ü as ü = Vu; + x, we have 

= J(Vw,o + J(x,0 

= J (div(tüC) - v, div(O) +J (x, 0 

=    [    w{{,n)+ f(x,C) 

= J(xX), 

where we've used the divergence theorem, div(() = 0, and (C,n) = 0 on d£l0. Thus, in 
order to decrease M, we can take C = X with corresponding formulas (16)-(18) for st, st, 
and üt, provided that we have div(x) = 0 and (x, n) = 0 on dü0. Thus it remains to show 
that we can decompose ü as fi = Vw + x for such a x- 

Gradient Descent: Rd: 

We let w be a solution of the Neumann-type boundary problem 

, div(fi)   =   Aw (21) 

(Vw,n)   =   (fi,n) onöfio, (22) 

and set x = fi — Viu. It is then easily seen that x satisfies the necessary requirements. 
Thus, by (18), we have the following evolution equation for fi: 

fit = Du (fi - VA_1div(fi)). (23) 
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This is a first order non-local scheme for üt if we count A-1 as minus 2 derivatives. Note 
that this flow is consistent with respect to the Monge-Kantorovich theory in the following 
sense. If ü is optimal, then it is given as ü = Vw, in which case ü — VA_1div(ü) = 
Vw - VA~1div(Viü) = 0 so that by (23), üt = 0. 

Gradient Descent: M?: 

The situation is somewhat simpler in the R2 case, due to the fact that a divergence free 
vector field x can m general be written as x = Vx/i for some scalar function h, where J_ 
represents rotation by 90 deg, so that Vxh = (—hy, hx). In this case, (21) becomes 

-\Mt = J (V^/, Vxh) = J (V/, VÄ> (24) 

where the decomposition of ü is ü = Vw + Vx/, and we can take h = /. The function / 
can be found by solving the Dirichlet-type boundary problem 

-div(üx)   =   A/, (25) 
/   =   0on9fi0, (26) 

which gives us the evolution equation 

üt = —DüV±A-1div(ü±). (27) 
Mo 

We may also derive a second order local evolution equation for ü by using the divergence 
theorem with (24) to get 

üt = -—DüVxdiv(üJ-), (28) 
Mo 

where appropriate handling of the evolution at the boundary is necessary. If the boundary 
is square, then one natural thing to do would be to assume that the displacement map 
ü — x is periodic. 

Denning the Warping Map: 

Typically in elastic registration, one wants to see an explicit warping which smoothly 
deforms one image into the other. This can easily be done using the solution of the 
Monge-Kantorovich problem. Thus, we assume now that we have applied our gradient 
descent process as described above and that it has converged to the Monge-Kantorovich 
mapping üMK- 

Following the work of Benamou and Brenier, [8], (see also [27]), we consider the following 
related problem: 

inf /   /   ß(t,x)\\v(t,x)\\2dtdx 
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over all time varying densities p and velocity fields v satisfying 

^ + div(H   =   0, ■ (29) 

/i(0,-)   =   no,  -/x(l,-)=A*i. (30) 

It is shown in [8] that this infimum is attained for some fimin and vmin, and that it is 
equal to the L2 Kantorovich-Wasserstein distance between /zo and fix. Further, the flow 
X = X(x,t) corresponding to the minimizing velocity field vmin via 

X(x, 0) = x,   Xt = vmin o X 

is given simply as 

X(x,t) = x + t(üMK(x)-x). (31) 

Note that when t = 0, X is the identity map and when t = 1, it is the solution ÜMK to 
the Monge-Kantorovich problem. This analysis provides appropriate justification for using 
(31) to define our continuous warping map X between the densities no and ßi. 

4.5    More General Cost Functions 

We can also consider more general cost functions which are useful in image interpolation 
and optical flow; see Section 5 below. Indeed, the theory we described above extends 
formally quite easily to general cost functions [5]. Indeed, suppose we are trying to minimize 
a functional 

M =     $(ü(x) - x)no(x) dx (32) 

where 3> : Rd —> R is a positive C1 cost function. 
From the above argument, we know that the evolution of ü : Rd —> M.d should J>e given 

as 

üt = Dü-C, (33) 

where £ is a divergence free vector field. Taking the first variation, one can derive an 
expression of the form 

Mt = -J(V(ü(x)-x)X). (34) 

Next decomposing 

$'(ü(a;) - x) = Vw + x, (35) 

14 



we have 

Mt   =   -J(x + Vw,0 

<x,0, 
/■ 

by the divergence theorem. Thus in order to decrease M we can take C = X> provided we 
show that div(x) = 0 and '(%, n) = 0. So we need to solve 

div(<fr'(ü(:r) — x))   =   Vw, 

(Vw,n)   =   (&(ü-x),n) on d£l0 

for w. This leads to the following nonlocal equation: 

ut = -—Du ■ (I - VA_1V-)$'(ü - a;). 

A similar argument to that given above also will give a local gradient descent scheme 
in this case as well [5]. 

5    Area-Preserving Diffeomorphisms and Optical Flow 
The computation of optical flow has proved to be an important tool for problems arising 
in active vision. The optical flow field is the velocity vector field of apparent motion of 
brightness patterns in a sequence of images [34]. One assumes that the motion of the 
brightness patterns is the result of relative motion, large enough to register a change in 
the spatial distribution of intensities on the images. Thus, relative motion between an 
object and a camera can give rise to optical flow. Similarly, relative motion among objects 
in a scene being imaged by a static camera can give rise to optical flow. The problem of 
computing optical flow is ill-posed and so well-posedness has to be imposed by assuming 
suitable a priori knowledge. For example, a number of researchers have considered a 
variational formulation for imposing such a priori knowledge. 

One constraint which has often been used in the literature is the "optical flow con- 
straint" (OFC). The OFC is a result of the simplifying assumption of constancy of the 
intensity, / = I(x, y, t), at any point in the image [34]. It can be expressed as the following 
linear equation in the unknown variables u and v 

Ixu + Iyv + It = 0, (36) 

where Ix, Iy and It are the intensity gradients in the x, y, and the temporal directions 
respectively, and u and v are the x and y velocity components of the apparent motion of 
brightness patterns in the images, respectively. It has been shown that the OFC holds 
provided the scene has Lambertian surfaces and is illuminated by either a uniform or an 
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isotropic light source, the 3-D motion is translational, the optical system is calibrated and 
the patterns in the scene are locally rigid. 

It is not difficult to see from equation (36) that computation of optical flow is unique 
only up to computation of the flow along the intensity gradient VI = (Ix, Iy)

T at a point 
in the image [34]. (The superscript T denotes "transpose.") This is the celebrated aperture 
problem. One way of treating the aperture problem is through the use of regularization in 
computation of optical flow, and consequently the choice of an appropriate constraint. A 
natural choice for such a constraint is the imposition of some measure of consistency on 
the flow vectors situated close to one another on the image. 

In their pioneering work, Horn and Schunk [34] use a quadratic smoothness constraint. 
The immediate difficulty with this method is that at the object boundaries, where it 
is natural to expect discontinuities in the flow, such a smoothness constraint will have 
difficulty capturing the optical flow. For instance, in the case of a quadratic constraint in 
the form of the square of the norm of the gradient of the optical flow field [34], the Euler- 
Lagrange (partial) differential equations for the velocity components turn out to be linear 
elliptic. The corresponding parabolic equations therefore have a linear diffusive nature, 
and tend to blur the edges of a given image. In the past, work has been done to try 
to suppress such a constraint in directions orthogonal to the occluding boundaries in an 
effort to capture discontinuities in image intensities that arise on the edges. In [44] a total 
variational type optimization problem is proposed in which the resulting Euler-Lagrange 
equations are nonlinear geometric heat equations which preserve edges much better. 

The optical flow constraint above is of course very strong. Motivated by Moser [51], 
we have proposed a modification of this that also could be placed in a variational setting. 
Namely, the Moser construction described in [51] allows one to do the following: Given 
a family of nowhere-zero 2-forms rt, we have an explicit method to determine a family of 
diffeomorphisms cj)t such that 

4>tTt = To- 

Differentiating 4>\rt = To with respect to t yields 

^rt + (Vrt,«t)+Ttdiv(«t) = 0. (37) 

This is very similar in form to the standard optical flow constraint with the divergence 
term added. In our work, we interpret image intensity as a type of form, and apply the 
Moser analysis under a much less restrictive assumption than the standard optical flow 
constraint given in equation (36). 

6    Image Interpolation and Optical Flow 

We would like to show how optimal transport ideas can be used to interpolate a given 
scalar field (and even a vector or tensor field) from one image to another, as well as in 
optical flow. For simplicity, we just consider the intensity maps in our discussion in this 
section.   We have already alluded to using area-preserving maps to weaken the optical 
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flow constraint.  In the present approach, we use the optimal transport philosophy more 
directly. 

The idea is to minimize a functional of the following form over area-preserving maps: 

M= I' {Foü-Gf + c? I \\Duf. (38) 

Here the first term controls the "goodness of fit" between the images G : Qo —► R and 
F : Qi —> R, and the second controls the "smoothness" of the mapping ü. Some other 
smoothness term could be used, of course. As with the Monge-Kantorovich flows, we can 
assume ü■ = u o s_1 where u is an initial mapping from ^o to fii, and s is a family of 
area-preserving mappings from Q0 to itself parameterized by time. Since we are dealing 
with images, Q0 and Qx will both be the same rectangular domain. For this application, 
one can use the identity map for u, so that ü = s_1. We also assume that s at time zero is 
the identity map. 

The methodology given above for optimal transport can be used in an analogous manner 
to derive local and non-local schemes for decreasing the functional (38). One can exploit 
this type of approach as the basis of scalar field mapping and optical flow algorithms. 
Finally, other "goodness of fit" terms may be included. In fact, we plan on using mutual 
information in this context making contact with the work in [72] for registration. 
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at), in Brain Mapping: The Methods, Second Edition edited by Arthur Toga and 
John Mazziotta, Academic Press, pages 661-690, 2003. 

35. "Mean curvature flows, edge detection, and medical image segmentation" (with S. 
Angenent, S. Haker, and A. Yezzi), in Computational Methods in Biophysics, Bio- 
materials, Biotechnology and Medical Systems edited by C. Leondes, pages 253-269, 
Kluwer, 2003. 

36. "New approach to Monge-Kantorovich with applications to computer vision and im- 
age processing" (with S. Haker), IMA Series on Applied Mathematics, volume 133, 
Springer-Verlag, New York, 2003. 

37. "Maximal entropy reconstruction of back projection images" (with T. Georgiou and 
P. Olver), IMA Series on Applied Mathematics, volume 133, Springer-Verlag, New 
York 2003. 

38. "Segmentation of diffusion tensor images" (with Eric Pichon and Guillermo Sapiro), 
in Directions in Mathematical Systems Theory and Optimization edited by Anders 
Rantzer and Chris Byrnes, pages 240-249, Springer, New York, 2002. 

39. "Optimal image interpolation and optical flow" (with S. Haker), in Multidisciplinary 
Research in Control, Lecture Notes in Control and Inform. Sei 289, pages 133-143, 
2002. 

40. "Stochastic crystalline flows" (with G. Ben-Arous and Ofer Zeitouni), in Mathemat- 
ical Systems Theory in Biology, Communications, Computation, and Finance edited 
by J. Rosenthal and D. Gilliam, IMA Volumes in Mathematics and Its Applications, 
volume 134, pages 41-63, Springer, New York, 2003. 

41. "On a stochastic model of geometric snakes" (with D. Nain, G. Unal, A. Yezzi, and 
O Zeitouni), to appear in Mathematical Methods in Computer Vision: A Handbook, 
edited by O. Faugeras and N. Paragios, Springer-Verlag, 2005. 

42. "Robust control and tracking", Proceedings of IEEE CDC'00. 

43. "Affine invariant symmetry sets" (with S. Betelu and G. Sapiro), Proceedings of 
ECCV'OO, Dublin, Ireland, June 2000. 

44. "Nondistorting maps for virtual colonoscopy" (with S. Angenent, S. Haker, and R. 
Kikinis), Proceedings of SPIE, San Diego, February 2000. 

45. "New approach for visualization of 3D colon imagery" (with S. Angenent, S. Haker, 
and R. Kikinis), MICCAI'00, October 2000. 
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46. "Length-based attacks for certain group based encryption rewriting systems" (with J. 
Hughes), SECI'02 Conference, Securite de la Communication sur Internet, Septem- 
ber 2002. 

47. "New algorithms for 3D analysis of open-celled foams," (with M. Montminy and C. 
Macosko), Proceedings of FOAM 2000, New Jersey. 

48. "High resolution sensing and anisotropic segmentation for SAR imagery" (with T. 
Georgiou), Proceedings of IEEE CDC"00. 

49. "Affine invariant erosion for 3D shapes" (with S. Betelu and G. Sapiro), ICCV'01, 
2001. 

50. "Missile tracking using knowledge-based adaptive thresholding" (with S. Haker, G. 
Sapiro, and D. Washburn), ICIP'01, 2001. 

51. "Cubical homology and the topological classification of 2D and 3D imagery" (with 
M. Allili and K. Mischaikow), ICIP'01, 2001. 

52. "Optimal transport and image warping" (with S. Haker), IEEE Conference on Vari- 
ational and Level Set Methods in Computer Vision, Vancouver, 20001. 

53. "Mass-preserving mappings and surface registration" (with S. Haker and R. Kikinis), 
MICCAI'01, October 2001. 

54. "Minimal transport for nonlinear control" (with S. Haker), CDC'01, December 2001. 

55. "L1 based optical flow for cardiac wall motion tracking" (with A. Kumar,' S. Haker, 
A. Stillman, C. Curry, D. Giddens, and A. Yezzi), Proceedings of SPIE, San Diego, 
February 2001. 

56. "Visual tracking and object recognition" (with A. Yezzi and A. Goldstein), Proceed- 
ings of NICOLS'01, St. Petersburg, Russia, July, 2001. 

57. "Conformal flattening maps for the visualization of vessels" (with S. Haker and L. 
Zhu), Proceedings of SPIE, San Diego, 2002. 

58. "Cubical topological analysis of blood vessels" (with M. Niethammer and A. Stein), 
Proceedings of ICIP, 2002. 

59. "Angle-reserving mappings and multiply branched vessels" (with L. Zhu and S. 
Haker), Proceedings of ICIP, 2002. 

60. "4D active surfaces for MR cardiac analysis" (with A. Yezzi), Proceedings of MIC- 
CAI'02. 

61. "Flux driven fly-throughs," CVPR, 2003. 
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62. "A Stokes flow based boundary integral formulation for measuring crosssections of 
two-dimensional tubular structures," (with M. Niethammer and E. Pichon)   ICIP 
2003. ' 

63. "Algorithms for stochastic approximations of curvature flows" (with G. Ben-Arous 
N. Shimkin, G. Unal, and O. Zeitouni), ICIP, 2003. 

64. "Dynamic level sets for visual tracking" (with M. Niethammer), IEEE Conference 
on Decision and Control, 2003. 

65. "Statistically based surface evolution method for medical image segmentation: pre- 
sentation and validation" (with E. Pichon and R. Kikinis), MICCAI, 2003. (Based 
student presentation award.) 

66. "Active contours and optical flow for automatic tracking of flying vehicles" (with J. 
Ha, C. Alvino, G. Pryor, E. Johnson), American Control Conference, 2004. 

67. "Image interpolation based on optimal mass preserving maps" (with L. Zhu), Pro- 
ceeedings of ISBI, 2004. 

68. "Flux driven fly-throughs" (with S. Bouix and K. Siddiqi) Proceedings of CVPR 
2003. 

69. "Dynamic geodesic snakes" (with M. Niethammer), in Proceedings of CVPR, 2004. 

70. "Knowledge-based 3D segmentation and reconstruction of left coronary arteries using 
CT images" (with D. Giddens and Y. Yang), EMBS04, 2004. 

71. "Flow patterns and wall shear stress distributions at atherosclerotic-prone sites in 
a human left coronary artery-an exploration using combined methods of CT and 
computational, fluid dynamics (with S. Jin, Y. Yang, J. Oshinski, A. Tannenbaum 
J. Gruden, and D. Giddens), EMBSO4, 2004. 

72. "Image morphing based on mutual information and optimal mass transport" (with 
L. Zhu), to appear in Proceedings of ICIP, 2004. 

73. "Automatic tracking of flying vehicles using geodesic snakes and Kaiman filtering" 
(with A. Betser and P. Vela), IEEE CDC, 2004. 

74. "Flying in formation using a pursuit guidance algorithm" (with A. Betser, G. Pryor; 
and P. Vela), submitted for publication to American Control Conference, 2005. 

75. "Tracking moving and deforming shapes using a particle filter" (with Y. Rathi, N. 
Vaswani, A. Yezzi), submitted for publication to CVPR, 2005. 

76. "Affine surface evolution for 3D segmentation" (with Y. Rathi, P. Olver, G. Sapiro), 
submitted for publication to ICIP, 2005. 
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77. "Pattern detection and image segmentation with anisotropic conformal factors" (with 
E. Pichon), submitted for publication to ICIP, 2005. 

Books Written Under AFOSR Support 

1. Invariance and Systems Theory: Algebraic and Geometric Aspects, Lecture Notes in 
Mathematics 845, Springer-Verlag, New York, 1981. 

2. Feedback Control Theory (with John Doyle and Bruce Francis), MacMillan Company, 
New York, 1991. (This book has been translated into Chinese and Japanese.) 

3. Robust Control of Distributed Parameter Systems (with Ciprian Foias and Hitay 
Ozbay), Lecture Notes in Control and Information Sciences 209, Springer-Verlag 
New York, 1995. 

4. Feedback Control, Uncertainty, and Complexity, edited by Bruce Francis and Allen 
Tannenbaum, Lecture Notes in, Control and Information Sciences 202, Springer- 
Verlag, New York, 1995. 

5. Deformation Theory, lectures by Michael Artin, notes by C. S. Seshadri and A. 
Tannenbaum, Tata Institute Lecture Notes, Bombay, India, 1976. 

6. Curvature Flows, Visual Tracking, and Computational Vision, to be published bv 
SIAM. 

7. Mathematical Methods in Computer Vision, edited by Peter Olver and Allen Tan- 
nenbaum, IMA Series on Applied Mathematics, volume 133, Springer-Verlag, 2004. 

Patents Based on AFOSR Projects 

1. "Conformal Geometry and Texture Mappings," (co-inventors Sigurd Angenent, Steven 
Haker, Allen Tannenbaum, and Ron Kikinis), U.S. Patent Number 6,697,538, issued 
February 24, 2004. 

2. "4D Kappa5 Gaussian Noise Reduction," (co-inventors Harvey Cline and Allen Tan- 
nenbaum), U.S. Patent Number 6,204,853 Bl, issued March 20, 2001. 

3. "Curvature Based System for the Segmentation and Analysis of Cardiac Magnetic 
Resonance Imagery," (co-inventors Allen Tannenbaum and Anthony Yezzi), U.S. 
Patent Number 6,535,623 Bl, issued March 18, 2003. 
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8    Personnel Supported 
1. Allen Tannenbaum (faculty) 

2. Marc Niethammer (Ph.D. granted December 2004) 

3. Eric Pichon (Ph.D. student; expected date of graduation: September 2005) 

4. Andrew Stein (M.S. granted December 2002) 
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